Trig Formula Sheet - For this definition we assume that. (tan )=sin(𝑥) cos(𝑥) (tan )= 1 cot(𝑥) (cot )= 1 tan(𝑥)) cot( )=cos(𝑥) sin(𝑥) sec( )= 1 cos(𝑥) csc( = 1 sin(𝑥) pythagorean identities (cos 2 )+sin( )=1 2sec( )−tan2( )=1 2csc( )−cot2( )=1 double angle identities Web symbolab trigonometry cheat sheet basic identities: Sin( ) = opposite hypotenuse csc( ) = hypotenuse Web trigcheatsheet definitionofthetrigfunctions righttriangledefinition forthisdefinitionweassumethat 0 < < ˇ 2 or0 < < 90. For this definition θ is any angle. 0 < q < or 0 ° < q < 90 °. For this definition q is any angle. 0 < θ < π or 0 ° < θ < 90 °. ( x , y ) y 1 θ.
(tan )=sin(𝑥) cos(𝑥) (tan )= 1 cot(𝑥) (cot )= 1 tan(𝑥)) cot( )=cos(𝑥) sin(𝑥) sec( )= 1 cos(𝑥) csc( = 1 sin(𝑥) pythagorean identities (cos 2 )+sin( )=1 2sec( )−tan2( )=1 2csc( )−cot2( )=1 double angle identities Sin( ) = opposite hypotenuse csc( ) = hypotenuse For this definition we assume that. For this definition q is any angle. 0 < q < or 0 ° < q < 90 °. Definition of the trig functions. Web trigcheatsheet definitionofthetrigfunctions righttriangledefinition forthisdefinitionweassumethat 0 < < ˇ 2 or0 < < 90. Web symbolab trigonometry cheat sheet basic identities: ( ) x , y. For this definition θ is any angle. ( x , y ) y 1 θ. \tan (x) = \frac {\sin (x)} {\cos (x)} \tan (x) = \frac {1} {\cot (x)} \cot (x) = \frac {1} {\tan (x)} \cot (x) = \frac {\cos (x)} {\sin (x)} \sec (x) = \frac {1} {\cos (x)} \csc (x) = \frac {1} {\sin (x)} For this definition we assume that. Definition of the trig functions. 0 < θ < π or 0 ° < θ < 90 °.